Acta Cryst. (1989). C45, 1050-1054

Structures of α, α' -Di(2-methoxyethoxy)stilbene and its Complex with Sodium Thiocyanate

BY B. TINANT AND J.-P. DECLERCQ

Laboratoire de Chimie physique et de Cristallographie, Université Catholique de Louvain, 1 place Louis Pasteur, 1348 Louvain la Neuve, Belgium

J. WEILER

Laboratoire de Chimie quantique, Université Catholique de Louvain, 1 place Louis Pasteur, 1348 Louvain la Neuve, Belgium

AND X. DE MAN AND J. PH. SOUMILLION

Laboratoire de Chimie organique physique, Université Catholique de Louvain, 1 place Louis Pasteur, 1348 Louvain la Neuve, Belgium

(Received 2 December 1988; accepted 3 January 1989)

Abstract. (1) $cis-\alpha,\alpha'$ -Di(2-methoxyethoxy)stilbene, $C_{20}H_{24}O_4$, $M_r = 328.41$, monoclinic, $P2_1/a$, a =20.640 (4), b = 9.542 (1), c = 9.400 (2) Å, $\beta =$ V = 1840.6 (6) Å³, $D_{r} =$ 96.17 (2)°, Z = 4,1.19 g cm⁻³, Cu Ka, $\lambda = 1.5418$ Å, $\mu = 6.70$ cm⁻¹, F(000) = 704, T = 291 K, R = 0.060 for 2545 observed reflections. (2) $cis-\alpha,\alpha'$ -Di(2-methoxyethoxy)stilbene-sodium thiocyanate monohydrate, C20H24O4.-NaSCN.H₂O, $M_r = 427.50$, monoclinic, $P2_1/n$, a =24.698 (8), b = 8.731 (2), c = 10.544 (3) Å, $\beta =$ 94.75 (2)°, V = 2266 (1) Å³, Z = 4, $D_x = 1.25$ g cm⁻³, Mo Ka, $\lambda = 0.71069$ Å, $\mu = 1.95$ cm⁻¹, F(000) = 904, T = 291 K, R = 0.048 for 2654 observed reflections. The conformation of the molecule as a free ligand is completely different from that in its NaSCN complex. In the free ligand (1) a circular arrangement is observed but one of the terminal methoxy oxygens is oriented outwards from the cavity. Twisting about the double bond is highly significant (17°) and both phenyl groups are deconjugated with respect to the C=C bond. In the complex (2) the Na cation is hexacoordinated to the four ether oxygens, to the SCN anion (through N) and to a water molecule, forming a distorted octahedron. The polyether chain is tightly folded in a conformation where the two terminal units are genuine 'corners' $(ag^{\pm}g^{\pm})$ with gauche bonds of the same sign.

Introduction. Recently we have reported the structures of a series of oligoethylene glycol dimethyl ethers (glymes) complexed with alkaline-earth metal thiocyanates (Wei, Tinant, Declercq, Van Meerssche & Dale, 1987b). Generally, for the same cation, the ligand wraps around the cation in a conformation which depends on the polyether length: short ligands – up to five oxygens – adopt circular arrangements while longer

0108-2701/89/071050-05\$03.00

chains fold in partial helical conformations. However, because of the high flexibility of the glymes the situation is far more complicated and it was difficult to rationalize all the parameters governing the conformations observed.

With the aim of studying its complexing properties, α, α' -di(2-methoxyethoxy)stilbene has been synthesized (De Man, 1988). To our knowledge, structures of such linear ligands, analogous to triglyme but with a double bond in the central unit, have not been described so far in free or complexed form (Allen *et al.*, 1979). Obviously this more preorganized ligand may give interesting complexes with new structural features as well as with new stability and selectivity properties (Cram, 1986; Vogtle & Weber, 1979). In view of the analogy with our previous work, we have decided to determine the structure of this ligand and some of its complexes. In this paper we compare the free molecule with its sodium thiocyanate complex.

Experimental. Crystals of (1) were obtained by crystallization from a petroleum/ethyl acetate mixture; (2) by slow evaporation from acetone, D_m not measured. Crystal sizes: (1) $0.42 \times 0.28 \times 0.11$ mm; (2) $0.50 \times$ 0.24×0.11 mm. Lattice parameters refined using (1) 30, (2) 15 reflections in the range $5^{\circ} \le 2\theta \le 25^{\circ}$. For (1), Huber four-circle diffractometer, graphitemonochromated Cu Ka radiation. 3324 hk+l independent reflections with $(\sin\theta)/\lambda \le 0.60 \text{ Å}^{-1}$; $0 \le$ $h \le 24, 0 \le k \le 11, -11 \le l \le 11, 2545$ with $I \ge 11$ $2.5\sigma(I)$. For (2), Syntex P2₁ diffractometer, graphitemonochromated Mo Ka radiation. 4425 $hk\pm l$ independent reflections with $(\sin\theta)/\lambda \le 0.62 \text{ Å}^{-1}$; $0 \le$ $h \le 29, 0 \le k \le 10, -12 \le l \le 12, 2654$ with $I \ge 12$ $2 \cdot 5\sigma(I)$. Standard reflections (1): $\overline{210}$ (2): $63\overline{2}$ checked

© 1989 International Union of Crystallography

every 50 reflections: no significant deviation. Both structures solved by SHELXS86 (Sheldrick, 1985). For (1) 21, for (2) all, H atoms from difference Fourier synthesis; those of methyl group C(14) of (1) calculated $(C-H = 1.08 \text{ Å}, H-C-H = 109.5^{\circ})$. Anisotropic least-squares refinement (SHELX76, Sheldrick, 1976) using F; H isotropic with common refined temperature factor. Weighting scheme: $w = 1/(\sigma^2 + gF^2)$, g =0.03652 for (1) and 0.00032 for (2). (1): R = 0.060, wR = 0.073, S = 0.54 for 2545 observed reflections. (2): R = 0.048, wR = 0.049, S = 1.79 for 2654 observed reflections. Final maximum shift to e.s.d. = (1)0.18, (2) 0.17. Maximum and minimum heights in final difference Fourier synthesis = (1) 0.20 and -0.40, (2) 0.45 and $-0.32 \text{ e} \text{ Å}^{-3}$. Atomic scattering factors from International Tables for X-ray Crystallography (1974).

Discussion. Final atomic parameters are given in Table 1.* Bond lengths, coordination distances, valence angles and selected torsion angles are compared in Table 2.

A stereoscopic view of the free ligand 1, showing the atom numbering, is presented in Fig. 1 (PLUTO, Motherwell & Clegg, 1978). It shows clearly that the molecule is preorganized to coordinate equatorially to a spherical cation: a single change of sign of the gauche bond C12-C13 $(g^+ \rightarrow g^-)^{\dagger}$ would orient all the four oxygens to point towards a common center in a planar arrangement. As open-chain neutral ligands, podands usually do not have a preformed intramolecular cavity inside which a cation can nest (Weber & Vogtle, 1981). The conformations in which a lone pair on each of the ether oxygens points towards a common center are obviously unstable because of dipole repulsions (Dale, 1980). The double bond in the central unit of the polyether chain enforces convergence of the oxygen atoms. The oxygens O1 and O3 in the central unit can only avoid repulsion of their lone pairs by torsions around the C-O and C=C bonds. Anti conformations of the C-O bonds are impossible because of steric overcrowding between the methylene and phenyl hydrogen atoms. The torsion angles observed for C11-C1-O1-C2 and C1-C11-O3-C12 are ca 105° (Table 2c), *i.e.* difficult to classify between g and a. In this situation torsion around the ethylenic bond is necessary to avoid, to some degree, the repulsion of the lone pairs. This torsion is important, the torsion angle O1-C1-C11-O3 taking a value of 16.6 (6)° (Table 2c). In the terminal units, the repulsion between the lone pairs is probably also the reason why one unit (O2) is

Table 1. Atomic coordinates $(\times 10^4)$ and equivalent isotropic temperature factors $(Å^2)$

$B_{\rm eq} = (8/3)\pi^2 \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	z	Beg
(a) Compou	und (1)			
CI	2570 (1)	2184 (2)	4545 (2)	3.85 (3)
01	3034 (1)	2666 (2)	5610 (2)	4-47 (3)
C2	3231 (1)	1680 (3)	6695 (3)	5.03 (4)
C3	3585 (1)	2448 (3)	7924 (3)	5.37 (5)
02	4176 (1)	2977 (2)	7543 (2)	5.52 (3)
C4	4501 (2)	3804 (5)	8616 (4)	7.61 (8)
65	1898 (1)	2161 (2)	4924 (2)	3.85 (3)
	1007(1)	3274(2)	5675(2)	4.61 (4)
	1047(1)	3202 (3)	5720 (2)	5.43 (5)
	860 (1)	2123 (3)	3720 (3)	5.42 (3)
	1489 (1)	1014(3) 1017(2)	4998 (3)	3.10(4)
	2775 (1)	1818 (2)	3280 (2)	3.85(3)
03	3433 (1)	1500 (2)	3268 (2)	4.54(3)
C12	3765 (1)	2631 (3)	2522 (3)	4.86(4)
C13	4462 (1)	2216 (4)	2634(4)	6,22(6)
04	4538 (1)	1051 (3)	1759 (3)	7.06(4)
C14	5172 (2)	481 (6)	2025 (6)	11.25(12)
C15	2370(1)	1587 (2)	1919 (2)	3.86(3)
C16	1833 (1)	2409 (3)	1482 (3)	4.66 (4)
C17	1495 (1)	2223 (3)	139 (3)	5.72 (5)
C18	1686 (2)	1214 (3)	-776 (3)	$5 \cdot 84(5)$
C19	2211(1)	390 (3)	-356 (3)	5.35 (5)
C20	2557 (1)	575 (2)	980 (3)	4-55 (4)
(b) Compo	und (2)			
Na	1788 (1)	2515(1)	1921(1)	4.26(2)
S	2031 (1)	3367 (2)	5928 (1)	11.96 (4)
C21	1828 (2)	4019 (5)	4535 (4)	6.38 (8)
N N	1688 (1)	4445 (4)	3534 (4)	7.15(8)
CI	1137(1)	847 (3)	-604 (2)	3.44 (5)
01	1586 (1)	639 (2)	261 (2)	3.91 (4)
C2	1618 (2)	-771 (3)	976 (3)	4-57 (6)
C3	1221 (2)	-814 (4)	1954 (4)	5.28(7)
02	1318(1)	438 (3)	2796 (2)	5-45 (5)
C4	990 (2)	407 (7)	3836 (4)	7-13 (10)
C5	973 (1)	-477 (3)	-1422 (2)	3-58 (5)
C6	1349 (1)	-1217 (4)	-2104 (3)	4.34 (6)
C7	1195 (2)	-2475 (4)	-2863 (3)	5.19(7)
C8	664 (2)	-2988 (4)	-2923 (3)	5-18 (7)
C9	294 (2)	-2272 (4)	-2245 (3)	4.91 (7)
C10	441(1)	-1025 (4)	-1494 (3)	4.39 (6)
CII	906 (1)	2221 (3)	-673 (2)	3.24 (5)
03	1060(1)	3299 (2)	268 (2)	3.55 (3)
C12	1276(1)	4/02 (3)	-198 (3)	4.28(6)
C13	1813(1)	4478 (4)	-706 (3)	4.79(7)
04	2193 (1)	4020 (2)	313 (2)	4.57(4)
C14	2089 (2)	3480(7)	-112(3)	7.40(11)
	484 (1)	2124 (3)	-10/0(2)	3.22(3)
C10	544 (1) 148 (1)	2430 (4)	- 2948 (3)	4.11(0)
	- 300 (1)	2930 (4)	- 3672 (3)	4.58 (6)
C18	-300(1)	3723 (4) 4033 (4)	-3332(3) -3272(3)	4.30(0)
C 20	- 3 3 4 (1)	3574 (3)	-1346 (3)	3.64 (5)
05	2616 (1)	1511 (3)	2719 (3)	5.83 (5)
				, - /

oriented inwards and the other (O4) outwards. The resulting conformational sequence along the chain is: $ag^{\pm}a \mp 102 \pm 17 \mp 110 ag^{\mp}a$. It differs from the circular arrangement which is characterized by the sequence $ag^{\pm}a$ with alternating signs. This latter conformation is the most familiar; it has been observed in many linear polyether complexes, *e.g.* triglyme.Ca(SCN)₂, tetraglyme.Ca, Sr, and Ba bis(thiocyanates) (Wei *et al.*, 1987*a*) and tetraglyme.HgCl₂ (Iwamoto, 1973). Thus the main difference with respect to the circular arrangement is the relative orientation of the two terminal units, for which the *gauche* bonds are of opposite signs. In the conformation adopted by the

^{*} Lists of structure factors, anisotropic thermal parameters, H-atom parameters and interatomic distances and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51715 (37 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

 $[\]dagger a = anti$ (±120, ±180°), $g = gauche, g^+$ (0, 120°), g^- (0, -120°) (Dale, 1980).

Table 2. Molecular geometry

Table 2. (cont.)

	0 2		
(a) Bond distances (Å)			(1)
	(1)	(2) ·	N-Na-O4 100.7 (3)
Ligand	.,		O1-Na-O4 $86.2(3)$
01C1	1-387 (2)	1.389 (3)	O2NaO4 157-9 (3)
C5-C1	1.469 (3)	1.478 (4)	O3–Na–O4 71-2 (3)
C11–C1	1.343 (3)	1.328 (4)	N-Na-O5 98.4 (3)
C2-O1	1.415 (3)	1.442 (3)	01Na05 97-5 (3)
C3-C2	1-492 (4)	1.481 (5)	02–Na–O5 90-9 (3)
02-03	1.401 (3)	1.416 (4)	03 - Na - 05 157.1 (3)
C4-02 C6-C5	1.395 (4)	1.416 (5)	93-3 (3)
C10-C5	1.304 (3)	1.382 (4)	(c) Torsion angles in the ligand $(\sigma = 0.6^{\circ})$
C7-C6	1.370 (4)	1.393 (4)	(0) resolve angles in the figure (0 = 0.0)
C8-C7	1.393 (4)	1.382(5)	(1) (2) (5-C1-O1-C2 78.8 44.4
C9C8	1.369 (4)	1.359 (5)	C11-C1-O1-C2102.5 138.7
C10-C9	1.371 (3)	1.378 (4)	01-C1-C5-C6 41.8 -51.5
03-011	1.376 (2)	1.398 (3)	O1-C1-C5-C10 -135.6 126.8
	1.474 (3)	1.484 (3)	C11-C1-C5-C6 -136-8 125-2
C12-03 C13-C12	1.427 (3)	1.439 (3)	C11-C1-C5-C10 45.8 -56.5
04	1.402 (4)	1.484 (5)	01-01-011-03 16.6 -11.3
C14-04	1.414 (4)	1.419 (5)	$C_{1} = C_{1} = C_{1$
C16-C15	1-384 (3)	1.387(4)	C_{5} $-C_{1}$ $-C$
C20-C15	1.391 (3)	1.384 (4)	$C1-O1-C2-C3$ $-165\cdot3$ $-72\cdot2$
C17-C16	1.387 (4)	1.390 (4)	01-C2-C3-O2 -67.5 -58.6
	1.377 (4)	1.369 (4)	C2-C3-O2-C4 175-0 -174-3
$C_{19} = C_{18}$	1.363 (4)	1.373 (4)	C1-C11-O3-C12 -109.7 121.6
020-019	1.388 (4)	1.379 (4)	C15-C11-O3-C12 71-8 -59-1
Anion			C1 = C11 = C15 = C16 38.3 = -47.0
N-C21		1.145 (5)	$O_3 = C_{11} = C_{15} = C_{16}$ = 140.5 [35.3]
S-C21		1.616 (5)	O3-C11-C15-C20 32.0 -43.8
		(-)	C11-O3-C12-C13 180.0 -68.8
Coordination distances			O3-C12-C13-O4 72.6 -64.6
Na-N		2-421 (4)	C12-C13-O4-C14 -169-9 168-0
Na-O1		2.419 (4)	
Na02		2.380 (4)	
Na-03 Na-04		2.495 (4)	
Na-05		2.420 (4)	8
		2.517 (4)	
(b) Bond angles (°)			Per-O _m
** .	(1)	(2)	
Ligand			
C5-C1-O1	115-3 (2)	116-5 (2)	
	117-5 (2)	118-0 (2)	
$C_{1-C_{1-C_{3}}}$	127-2 (2)	125.3 (2)	
$C_{2} = C_{1} = C_{1}$	108.1(2)	117.4 (2)	
02-C3-C2	110-3 (2)	109.2(3)	
C4-O2-C3	112.5 (2)	$113 \cdot 1(3)$	
C6-C5-C1	119-8 (2)	120.4 (3)	C18 C18
C10-C5-C1	121.6 (2)	120.7 (3)	
$C_{10} - C_{5} - C_{6}$	118-5 (2)	118-8 (3)	• 8
C_{8} C_{7} C_{6}	120.9 (2)	120.3(3)	Fig. 1. Stereoscopic view of the free ligand (1).
C9-C8-C7	119.2 (2)	119.0 (3)	
C10-C9-C8	121.2 (2)	120.5(3)	
C9-C10C5	120.2 (2)	120.4(3)	
O3-C11-C1	117.2 (2)	118.7 (2)	ligand the four ether oxygens are however approvi
C15-C11-C1	127.2 (2)	125-4 (2)	inguind, the four ether oxygens are, nowever, approxi-
C12 - C11 - C13	115.6 (2)	115.9 (2)	mately coplanar (max. deviation from their mean plane
$C_{12} = C_{12} = C_{13}$	107.1 (2)	$114 \cdot 7(2)$	0.1 A (Table 3).
O4-C13-C12	109.8 (2)	108.6(2)	The orientation of the phenyl rings in (1) is also of
C14-O4-C13	111-2 (3)	112.8(3)	The orientation of the phenyl rungs in (1) is also of
C16-C15-C11	122.4 (2)	120.9 (2)	interest. Both rings are twisted out of the ethylenic bond
C20-C15-C11	119-2 (2)	120-5 (2)	plane so that $C_{11}-C_{1}-C_{5}-C_{10} = 45.8$ (6)° and
$C_{20} = C_{15} = C_{16}$	118-2 (2)	118.5 (2)	$C_{1} = C_{11} = C_{15} = C_{16} = 28 \cdot 2 \cdot (6)^{\circ}$ As a result them are
C18 - C17 - C16	120.5 (2)	$120 \cdot 2(3)$ 120 4(2)	$C1 - C11 - C13 - C10 = 30.3 (0)^{-1}$. As a result they are
C19-C18-C17	120.6 (2)	120.4(3)	almost perpendicular to each other, the dihedral angle
C20-C19-C18	120·6 (2) 119·6 (2)	119.7 (3)	
C10_C20_C15	120-6 (2) 119-6 (2) 120-3 (2)	119·7 (3) 120·3 (3)	between their mean planes being 118°. In this
019-020-015	120-6 (2) 119-6 (2) 120-3 (2) 120-8 (2)	119.7 (3) 120.3 (3) 120.8 (3)	between their mean planes being 118°. In this
c19-c20-c15	120-6 (2) 119-6 (2) 120-3 (2) 120-8 (2)	1 19·7 (3) 120·3 (3) 120·8 (3)	between their mean planes being 118°. In this conformation, the conjugation of each aromatic group
Anion	120-6 (2) 119-6 (2) 120-3 (2) 120-8 (2)	119·7 (3) 120·3 (3) 120·8 (3)	between their mean planes being 118°. In this conformation, the conjugation of each aromatic group with the double bond is almost completely lost. The
Anion N-C21-S	120-6 (2) 119-6 (2) 120-3 (2) 120-8 (2)	119-7 (3) 120-3 (3) 120-8 (3) 178-2 (4)	between their mean planes being 118°. In this conformation, the conjugation of each aromatic group with the double bond is almost completely lost. The $C=C$ bond length of 1.343 (3) Å is trained of 1.
Anion N-C21-S	120-6 (2) 119-6 (2) 120-3 (2) 120-8 (2)	119.7 (3) 120.3 (3) 120.8 (3) 178.2 (4)	between their mean planes being 118° . In this conformation, the conjugation of each aromatic group with the double bond is almost completely lost. The C=C bond length of 1.343 (3) Å is typical of a
Anion N-C21-S Around the cation	120-6 (2) 119-6 (2) 120-3 (2) 120-8 (2)	119.7 (3) 120.3 (3) 120.8 (3) 178.2 (4)	between their mean planes being 118° . In this conformation, the conjugation of each aromatic group with the double bond is almost completely lost. The C=C bond length of 1.343 (3)Å is typical of a non-conjugated double bond. In the polyether moiety
Anion N-C21-S Around the cation N-Na-O1	120-6 (2) 119-6 (2) 120-3 (2) 120-8 (2)	119.7 (3) 120.3 (3) 120.8 (3) 178.2 (4)	between their mean planes being 118° . In this conformation, the conjugation of each aromatic group with the double bond is almost completely lost. The C=C bond length of 1.343 (3) Å is typical of a non-conjugated double bond. In the polyether moiety the distances C-C and C-O are as expected The
Anion N-C21-S Around the cation N-Na-O1 N-Na-O2 O1-Na-O2	120-6 (2) 119-6 (2) 120-3 (2) 120-8 (2)	119.7 (3) $120.3 (3)$ $120.8 (3)$ $178.2 (4)$ $162.2 (3)$ $100.1 (3)$ $71.7 (2)$	between their mean planes being 118° . In this conformation, the conjugation of each aromatic group with the double bond is almost completely lost. The C=C bond length of $1.343(3)$ Å is typical of a non-conjugated double bond. In the polyether moiety the distances C-C and C-O are as expected. The valence angles between the phased rings and the double between the phased rings are double between the
Anion N-C21-S Around the cation N-Na-O1 N-Na-O2 O1-Na-O2 N-Na-O3	120-6 (2) 119-6 (2) 120-3 (2) 120-8 (2)	119.7 (3) 120-3 (3) 120-8 (3) 178-2 (4) 162-2 (3) 100-1 (3) 71-7 (3) 100-9 (3)	between their mean planes being 118° . In this conformation, the conjugation of each aromatic group with the double bond is almost completely lost. The C=C bond length of 1.343 (3) Å is typical of a non-conjugated double bond. In the polyether moiety the distances C-C and C-O are as expected. The valence angles between the phenyl rings and the double
Anion N-C21-S Around the cation N-Na-O1 N-Na-O2 O1-Na-O2 N-Na-O3 O1-Na-O3	120-6 (2) 119-6 (2) 120-3 (2) 120-8 (2)	119.7 (3) 120-3 (3) 120-8 (3) 178-2 (4) 162-2 (3) 100-1 (3) 71-7 (3) 100-9 (3) 65-6 (3)	between their mean planes being 118° . In this conformation, the conjugation of each aromatic group with the double bond is almost completely lost. The C=C bond length of $1.343(3)$ Å is typical of a non-conjugated double bond. In the polyether moiety the distances C-C and C-O are as expected. The valence angles between the phenyl rings and the double bond are significantly larger than 120° : C5-C1-
Anion N-C21-S Around the cation N-Na-O1 N-Na-O2 O1-Na-O2 O1-Na-O3 O1-Na-O3 O2-Na-O3	120-6 (2) 119-6 (2) 120-3 (2) 120-8 (2)	119-7 (3) 120-3 (3) 120-8 (3) 178-2 (4) 162-2 (3) 100-1 (3) 71-7 (3) 100-9 (3) 65-6 (3) 97-6 (3)	between their mean planes being 118°. In this conformation, the conjugation of each aromatic group with the double bond is almost completely lost. The C=C bond length of 1.343 (3) Å is typical of a non-conjugated double bond. In the polyether moiety the distances C-C and C-O are as expected. The valence angles between the phenyl rings and the double bond are significantly larger than 120° : C5-C1-C11=C1-C11-C15=127.2 (2)°. They indicate the

Table	3.	Mear	ı pl	anes	and	distance	s of	` some	atoms
fro	m	these j	olan	es (R	ober	ts and Sh	eldr	ick, 19	75)

Mean plane through	01,0	(1) 2, O3, O4	(2) 01, 03, N, 05		
Equation	$\begin{array}{l} 0.0481x + 0.9453y \\ - 0.3227z = 1.1379 \end{array}$		$\begin{array}{l} 0.5664x + 0.5843y \\ - 0.5812z = 2.851 \end{array}$		
Distances (Å)	01 02 03 04 C1 C5 C11 C15	$\begin{array}{c} 0.082 \\ -0.029 \\ -0.103 \\ 0.050 \\ -0.109 \\ -0.359 \\ -0.022 \\ 0.115 \end{array}$	O1 O2 O3 O4 Na N O5	-0.286 -2.347 0.271 2.326 -0.040 -0.196 0.211	

steric repulsion between the two aromatic rings in a *cis* configuration. Similar values have been observed in other *cis*-stilbenes (Tinant, Touillaux, Declercq, Van Meerssche, Leroy & Weiler, 1983).

The complex of (1) with sodium thiocyanate is presented in the stereoview of Fig. 2. A water molecule (O5) completes the coordination sphere of the cation.

(a) Coordination of Na

The coordination around the Na cation is sixfold and has a distorted octahedral geometry. The four ether oxygen atoms are coordinated at distances ranging from 2.380(4) to 2.495(4) Å (Table 2a). The coordination sphere is completed by the SCN anion (through the N atom) and by the water molecule O5. From the sum of the van der Waals radii (1.4 Å for O, 1.5 Å for N) (Pauling, 1960) and the effective ionic radii (1.02 Å for Na⁺ with coordination VI) (Shannon, 1976), one may expect distances Na⁺···O of 2.42 Å and Na⁺···N of 2.52 Å. The mean value for the four ether oxygens— Na distances is 2.43(2) Å, in agreement with predicted values. The Na⁺···N and Na⁺···O5(w) are shorter than the sum of radii because of the higher electronegativity of the donor atoms, especially N which carries a negative charge. The O····O and O····N distances range from 2.662 (4) to 3.670 (4) Å; the distance O1...O3 of 2.662(4) Å is shorter than the sum of the van der Waals radii but these atoms are adjacent to the double bond, while $O1\cdots O2 = 2.811$ (4) Å and $O3\cdots O4 =$ 2.866 (4) Å correspond to the sum of radii. Consequently, the angles O1...Na...O2, O1...Na...O3 and O3...Na...O4 deviate more significantly from the value of 90° expected for a regular octahedron.

(b) Conformation of the ligand

Distances and valence angles are very similar in the complex and in the free ligand (Table 2*a*,*b*). The orientation of the phenyl groups is also similar: torsion angles C11-C1-C5-C10 and C1-C11-C15-C16 in (2) are, respectively, -56.5 (6) and -47.0 (6)°, *i.e.* they are twisted out of the ethylenic plane by 10° more than in the free ligand. This greater degree of deconjugation is reflected perhaps in the slightly shorter

C=C and longer C-C_{ar} in bonds in (2) (Table 2a). The torsion around the ethylenic bond $[O1-C1-C11-O3 = -11\cdot 3 (6)^{\circ}]$ is less than in (1).

As shown in Fig. 2 and by a comparison of the torsion angles along the chain (Table 2c), the ligand has approximate twofold symmetry with the diad perpendicular to the central C=C bond. The conformation of the two arms of the ligand is completely different from that observed for (1). Two C-O bonds, O1-C2 and O3-C12, located symmetrically with respect to the C=C bond, which were *anti* in (1) are *gauche* in (2) and have the same sign. Moreover, the gauche bond C12-C13 now has the same sign as its symmetrical counterpart C2-C3. This leads to a conformational sequence which contains two genuine corners $(g^{\pm}g^{\pm})$ (Dale, 1980): $ag^{\pm}g^{\pm} \mp 139 \pm 11 \mp 122 g^{\pm}g^{\pm}a$. The result is a tight folding which brings O2 and O4 to opposite sides of a plane containing O1, O3, N, O5w and the Na⁺ cation (Fig. 2, Table 3). This is clearly quite different from the circular arrangement expected from the free ligand structure from known structures of short linear polyethers, particularly (because of similar ionic radii) that of triglyme.Ca(SCN) (Wei et al., 1987a). The reason might be that Na does not satisfy the 'cavity' size which would be obtained in a horseshoe arrangement containing a central double bond. We plan to study the structures of other alkali-metal and alkalineearth thiocyanate complexes of (1) in order to verify this hypothesis.

The thiocyanate anion is almost linear with N– C–S = $178 \cdot 2$ (4)°. In all the alkaline-earth.glyme

Fig. 2. Stereoscopic view of the complex (2).

Fig. 3. Stereoscopic view of hydrogen bonding in the complex.

thiocyanates the anion was bound through N in an approximately linear manner (M^{2+} ...NCS⁻ 180°) (Wei et al., 1987a,b). In the present structure the angle $Na^+ \cdots NCS^- = 112.4 (3)^\circ$ and, in addition to being coordinated to Na, the N atom is hydrogen bonded to a symmetry-related water molecule. Such non-linear arrangements are relatively uncommon but have already been reported for some alkali-metal thiocyanate complexes (Weber & Saenger, 1980; Suh, Weber, Kaftory, Saenger, Sieger & Vogtle, 1980). The other hydrogen atom of the water molecule is H-bonded to the ether oxygen O4. The distances are: O5-H51...N (O5 0.5-x, 0.5+y, 0.5-z): O...N 2.887, H...N 1.98 Å; O5-H52...O4 (O5 0.5-x, 0.5+y, 0.5-z): O···O 3·016, H···O 2·33 Å. A stereoscopic view of the hydrogen bonds between the complex units is presented in Fig. 3.

BT and J-PD thank the FNRS Belgium for financial support.

References

ALLEN, F. H., BELLARD, S., BRICE, M. D., CARTWRIGHT, B. A., DOUBLEDAY, A., HIGGS, H., HUMMELINK, T., HUMMELINK-PETERS, B. G., KENNARD, O., MOTHERWELL, W. D. S., RODGERS, J. R. & WATSON, D. G. (1979). Acta Cryst. B35, 2331–2339.

CRAM, D. J. (1986). Angew. Chem. Int. Ed. Engl. 25, 1039-1057.

- DALE, J. (1980). Isr. J. Chem. 20, 3-11.
- DE MAN, X. E. (1988). Mémoire de licence, Louvain Univ., Belgium.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- Іwамото, R. (1973). Bull. Soc. Chim. Jpn, 46, 1114-1127.
- MOTHERWELL, S. & CLEGG, W. (1978). PLUTO. Univ. of Cambridge, England.
- PAULING, L. (1960). The Nature of the Chemical Bond. Ithaca, NY: Cornell Univ. Press.
- ROBERTS, P. & SHELDRICK, G. M. (1975). XANADU. Program for crystallographic calculations. Univ. of Cambridge, England.
- SHANNON, R. D. (1976). Acta Cryst. A32, 751-767.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1985). In Crystallographic Computing 3, edited by G. M. SHELDRICK, C. KRUGER & R. GODDARD, pp. 175–189. Oxford Univ. Press.
- SUH, I.-H., WEBER, G., KAFTORY, M., SAENGER, W., SIEGER, H. & VOGTLE, F. (1980). Z. Naturforsch. pp. 352-359.
- TINANT, B., TOUILLAUX, R., DECLERCO, J.-P., VAN MEERSSCHE, M., LEROY, G. & WEILER, J. (1983). Bull. Soc. Chim. Belg. 92, 101-110.
- VOGTLE, F. & WEBER, E. (1979). Angew. Chem. Int. Ed. Engl. 18, 753-776.
- WEBER, E. & SAENGER, W. (1980). Acta Cryst. B36, 61-64.
- WEBER, E. & VOGTLE, F. (1981). Top. Curr. Chem. 98, 1-41.
- WEI, Y. Y., TINANT, B., DECLERCQ, J.-P., VAN MEERSSCHE, M. & DALE, J. (1987a). Acta Cryst. C43, 1076–1080, 1080–1083.
- WEI, Y. Y., TINANT, B., DECLERCQ, J.-P., VAN MEERSSCHE, M. & DALE, J. (1987b). Acta Cryst. C43, 1279–1281, and references therein.

Acta Cryst. (1989). C45, 1054-1057

Structure of Catalpol Hexaacetate*

BY M. JIMÉNEZ E., M. A. GONZÁLEZ G., A. LIRA-ROCHA, R. A. TOSCANO AND M. SORIANO-GARCÍA[†]

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Mexico DF

(Received 28 June 1988; accepted 3 January 1989)

Abstract. $[1S-(1\alpha,4\alpha\alpha,7\beta,7\alpha\alpha)]$ -5-Acetoxy-7-acetoxymethyl-6 α ,7 α -epoxy-1-(2,3,4,6-tetra-*O*-acetyl- β -Dglucopyranosyloxy)-1,4a,5,6,7,7a-hexahydrocyclopenta[*c*]pyran,‡ C₂₇H₃₄O₁₆, *M_r* = 614·6, monoclinic, *P*2₁, *a* = 5.877 (2), *b* = 12.735 (5), *c* = 20.759 (9) Å, β = 95.62 (3)°, *V* = 1546 (1) Å³, *Z* = 2, *D_x* = 1.32 Mg m⁻³, Mo K α , λ = 0.7107 Å, μ = 0.103 mm⁻¹, *F*(000) = 648, *T* = 293 K, *R* = 0.053 for 2099 observed reflections. The X-ray analysis confirms the

structure previously assigned on the basis of chemical and spectroscopic studies. The five-membered ring is intermediate between a half-chair and an α -envelope, whilst the dihydropyran ring adopts a sofa conformation. The β -glucose moiety is a distorted 4C_1 chair. The packing in the crystal is entirely due to intermolecular C-H···O contacts and van der Waals forces.

Introduction. Catalpol (1) is a naturally occurring iridoid glucoside which was isolated from the aerial parts of the plant *Penstemon apateticus* (Schrophulariaceae). The sample used was collected in Cofre de Perote (Estado de Veracruz, Mexico). This plant

© 1989 International Union of Crystallography

^{*} Contribution No. 958 of the Instituto de Quimica, UNAM. † To whom correspondence should be addressed.

¹⁰ whom correspondence should be addressed.

[‡] Alternative name: $[1S-(1\alpha,4\alpha\alpha,7\beta,7\alpha\alpha)]-(5-acetoxy-7-acetoxy-methyl-6\alpha,7\alpha-epoxy-1,4a,5,6,7,7a-hexahydrocyclopenta[c]$ pyranyl)-β-D-glycopyranoside tetraacetate.